Add like
Add dislike
Add to saved papers

Arm position influences the activation patterns of trunk muscles during trunk range-of-motion movements.

To understand the activation patterns of the trunk musculature, it is also important to consider the implications of adjacent structures such as the upper limbs, and the muscles that act to move the arms. This study investigated the effects of arm positions on the activation patterns and co-activation of the trunk musculature and muscles that move the arm during trunk range-of-motion movements (maximum trunk axial twist, flexion, and lateral bend). Fifteen males and fifteen females, asymptomatic for low back pain, performed maximum trunk range-of-motion movements, with three arm positions for axial twist (loose, crossed, abducted) and two positions for flexion and lateral bend (loose, crossed). Electromyographical data were collected for eight muscles bilaterally, and activation signals were cross-correlated between trunk muscles and the muscles that move the arms (upper trapezius, latissimus dorsi). Results revealed consistently greater muscle co-activation (higher cross-correlation coefficients) between the trunk muscles and upper trapezius for the abducted arm position during maximum trunk axial twist, while results for the latissimus dorsi-trunk pairings were more dependent on the specific trunk muscles (either abdominal or back) and latissimus dorsi muscle (either right or left side), as well as the range-of-motion movement. The findings of this study contribute to the understanding of interactions between the upper limbs and trunk, and highlight the influence of arm positions on the trunk musculature. In addition, the comparison of the present results to those of individuals with back or shoulder conditions may ultimately aid in elucidating underlying mechanisms or contributing factors to those conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app