Add like
Add dislike
Add to saved papers

Effects of multiple but low pesticide loads on aquatic fungal communities colonizing leaf litter.

In the first tier risk assessment (RA) of pesticides, risk for aquatic communities is estimated by using results from standard laboratory tests with algae, daphnids and fish for single pesticides such as herbicides, fungicides, and insecticides. However, fungi as key organisms for nutrient cycling in ecosystems as well as multiple pesticide applications are not considered in the RA. In this study, the effects of multiple low pesticide pulses using regulatory acceptable concentrations (RACs) on the dynamics of non-target aquatic fungi were investigated in a study using pond mesocosm. For that, fungi colonizing black alder (Alnus glutinosa) leaves were exposed to multiple, low pulses of 11 different pesticides over a period of 60days using a real farmer's pesticide application protocol for apple cropping. Four pond mesocosms served as treatments and 4 as controls. The composition of fungal communities colonizing the litter material was analyzed using a molecular fingerprinting approach based on the terminal Restriction Fragment Length Polymorphism (t-RFLP) of the fungal Internal Transcribed Spacer (ITS) region of the ribonucleic acid (RNA) gene(s). Our data indicated a clear fluctuation of fungal communities based on the degree of leaf litter degradation. However significant effects of the applied spraying sequence were not observed. Consequently also degradation rates of the litter material were not affected by the treatments. Our results indicate that the nutrient rich environment of the leaf litter material gave fungal communities the possibility to express genes that induce tolerance against the applied pesticides. Thus our data may not be transferred to other fresh water habitats with lower nutrient availability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app