Add like
Add dislike
Add to saved papers

Synthesis of novel curcuminoids accommodating a central β-enaminone motif and their impact on cell growth and oxidative stress.

Curcuminoids are high-potential drugs targeting multiple components of vital signaling pathways without being toxic, and are therefore considered to be valuable lead structures in medicinal chemistry. Unfortunately, most curcuminoids poorly reach their site of action because of low bioavailability issues, (partly) associated with the labile β-diketo structure. In that respect, curcumin derivatives bearing a central β-enaminone fragment may have improved solubility and intestinal stability, and therefore may represent a new class of analogs with higher bioactivity. In that mindset, thirteen N-alkyl enaminones were efficiently synthesized via a novel approach, using montmorillonite K10 clay and microwave irradiation. These compounds were then characterized in terms of solubility and chemical anti-oxidant properties, and were applied in screening assays for cell toxicity, growth and oxidative stress using CHO-K1, EA.hy926, HT-29 and Caco-2 cell lines. Compared to native curcumin, many nitrogen derivatives showed a stronger antiproliferative effect, which was highly structure and cell type dependent. In addition, the correlation between cell viability and reactive oxygen species production was limited. Therefore, this set of novel curcumin derivatives may be useful to unravel other mechanisms of oxidative stress-related diseases, and eventually be used as more bioavailable and bioactive alternatives for native curcumin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app