Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

SPAK plays a pathogenic role in IgA nephropathy through the activation of NF-κB/MAPKs signaling pathway.

Sterile 20/SPS1-related proline/alanine-rich kinase (SPAK) can stimulate production of proinflammatory cytokines and interact with inflammation-related molecules. However, it has yet to be determined whether SPAK plays a pathophysiological role in the complicated pathological mechanisms of IgA nephropathy (IgAN), which is mainly characterized by mesangial cell (MC) proliferation and is the most common form of glomerulonephritis. In the present study, we examined the pathophysiological role of SPAK in IgAN using a mouse model and cell models. Our results clearly showed that (1) SPAK deficiency prevents the development of IgAN and inhibits production of immune/inflammatory mediators and T cell activation and proliferation; and (2) when primed with IgA immune complexes (IgA IC), both peritoneal macrophages and primary MCs from SPAK knockout mice show markedly reduced production of proinflammatory cytokines and inhibition of NF-κB/MAPKs activation. We proposed that activation of SPAK and the NF-κB/MAPKs signaling pathway in MCs, macrophages and T cells of the glomerulus may be a mechanism underlying the pathogenesis of IgAN. The activation of SPAK in renal tubuloepithelial cells either directly by IgA IC or an indirect action of the activated MCs or infiltrating mononuclear leukocytes seen in the kidney may further aggravate the disease process of IgAN. Our results suggest that SPAK is a potential therapeutic target for the glomerular disorder.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app