Add like
Add dislike
Add to saved papers

Spatiotemporal Control of Light Transmission through a Multimode Fiber with Strong Mode Coupling.

We experimentally generate and characterize eigenstates of the Wigner-Smith time-delay matrix, called principal modes, in a multimode fiber with strong mode coupling. The unique spectral and temporal properties of principal modes enable global control of temporal dynamics of optical pulses transmitted through the fiber, despite random mode mixing. Our analysis reveals that well-defined delay times of the eigenstates are formed by multipath interference, which can be effectively manipulated by spatial degrees of freedom of input wave fronts. This study is essential to controlling dynamics of wave scattering, paving the way for coherent control of pulse propagation through complex media.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app