JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Analysis of red blood cells' dynamic status in a simulated blood circulation system using an ultrahigh-speed simultaneous framing optical electronic camera.

Alterations in the morphologic and mechanical properties of red blood cells (RBCs) are considered direct indicators of blood quality. Current measures of characterizing these properties in vivo are limited by the complicated hemodynamic environment. To better evaluate the quality of fresh and stored blood, a new research platform was constructed to evaluate the hemodynamic characteristics of RBCs. The research platform consists mostly of a microfluidic chip, microscope, and ultrahigh-speed simultaneous framing optical electronic camera (USFOEC). The microfluidic chip was designed to simplify the complicated hemodynamic environment. The RBCs were diluted in erythrocyte preservative fluid and infused into the microfluidic channels. After approximately 600× magnification of using the microscope and camera, the RBCs' dynamic images were captured by the USFOEC. Eight sequential and blur-free images were simultaneously captured by the USFOEC system. Results showed that RBC deformation changed with flow velocity and stored RBCs were less sensitive to deformation (Kfresh  < Kstored ). The frozen-stored RBCs were better able to sustain hydrodynamic stress (DI49day  = 0.128 vs. DIfrozen  = 0.118) than cold-stored RBCs but more sensitive to variations in flow speed (K49day  = 1626.2 vs. Kfrozen  = 1318.2). Results showed that the stored RBCs had worse deformability than fresh RBCs, but frozen-stored RBCs may incur less damage during storage than those stored at merely cold temperatures. This USFOEC imaging system can serve as a platform for direct observation of cell morphological and mechanical properties in a medium similar to a physiologic environment. © 2016 International Society for Advancement of Cytometry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app