Add like
Add dislike
Add to saved papers

Using H2O2 treatments for the degradation of cyanobacteria and microcystins in a shallow hypertrophic reservoir.

Toxins produced by cyanobacteria in freshwater ecosystems constitute a serious health risk worldwide for humans that may use the affected water bodies for recreation, drinking water, and/or irrigation. Cyanotoxins have also been deemed responsible for loss of animal life in many places around the world. This paper explores the effect of H2O2 treatments on cyanobacteria and microcystins in natural samples from a hypertrophic reservoir in microcosm experiments. According to the results, cyanobacteria were more easily affected by H2O2 than by other phytoplanktonic groups. This was shown by the increase in the fractions of chlorophyll-a (a proxy for phytoplankton) and chlorophyll-b (a proxy for green algae) over total phytoplankton pigments and the decrease in the fraction of phycocyanin (a proxy for cyanobacteria) over total phytoplankton pigments. Thus, while an overall increase in phytoplankton occurred, a preferential decrease in cyanobacteria was observed with H2O2 treatments over a few hours. Moreover, significant degradation of total microcystins was observed under H2O2 treatments, while more microcystins were degraded when UV radiation was used in combination with H2O2. The combination of H2O2 and ultraviolet (UV) treatment in natural samples resulted in total microcystin concentrations that were below the World Health Organization limit for safe consumption of drinking water of 1 μg/L. Although further investigation into the effects of H2O2 addition on ecosystem function must be performed, our results show that the application of H2O2 could be a promising method for the degradation of microcystins in reservoirs and the reduction of public health risks related to the occurrence of harmful algal blooms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app