Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Mechanical and material properties of the plantarflexor muscles and Achilles tendon in children with spastic cerebral palsy and typically developing children.

Journal of Biomechanics 2016 September 7
BACKGROUND: Children with spastic cerebral palsy (CP) experience secondary musculoskeletal adaptations, affecting the mechanical and material properties of muscles and tendons. CP-related changes in the spastic muscle are well documented whilst less is known about the tendon. From a clinical perspective, it is important to understand alterations in tendon properties in order to tailor interventions or interpret clinical tests more appropriately. The main purpose of this study was to compare the mechanical and material properties of the Achilles tendon in children with cerebral palsy to those of typically developing children.

METHODS: Using a combination of ultrasonography and motion analysis, we determined tendon mechanical properties in ten children with spastic cerebral palsy and ten aged-matched typically developing children. Specifically, we quantified muscle and tendon stiffness, tendon slack length, tendon strain, cross-sectional area, Young׳s Modulus and the strain rate dependence of tendon stiffness.

FINDINGS: Children with CP had a greater muscle to tendon stiffness ratio compared to typically developing children. Despite a smaller tendon cross-sectional area and greater tendon slack length, no group differences were observed in tendon stiffness or Young׳s Modulus. The slope describing the stiffness strain-rate response was steeper in children with cerebral palsy.

INTERPRETATION: These results provide us with a more differentiated understanding of the muscle and tendon mechanical properties, which would be relevant for future research and paediatric clinicians.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app