Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Antioxidative therapy in an ex vivo human cartilage trauma-model: attenuation of trauma-induced cell loss and ECM-destructive enzymes by N-acetyl cysteine.

OBJECTIVE: Mechanical trauma of articular cartilage results in cell loss and cytokine-driven inflammatory response. Subsequent accumulation of reactive oxygen (ROS) and nitrogen (RNS) species enhances the enzymatic degradation of the extracellular matrix (ECM). This study aims on the therapeutic potential of N-acetyl cysteine (NAC) in a human ex vivo cartilage trauma-model, focusing on cell- and chondroprotective features.

DESIGN: Human full-thickness cartilage explants were subjected to a defined impact trauma (0.59 J) and treated with NAC. Efficiency of NAC administration was evaluated by following outcome parameters: cell viability, apoptosis rate, anabolic/catabolic gene expression, secretion and activity of matrix metalloproteinases (MMPs) and proteoglycan (PG) release.

RESULTS: Continuous NAC administration increased cell viability and reduced the apoptosis rate after trauma. It also suppressed trauma-induced gene expression of ECM-destructive enzymes, such as ADAMTS-4, MMP-1, -2, -3 and -13 in a dosage- and time-depending manner. Subsequent suppression of MMP-2 and MMP-13 secretion reflected these findings on protein level. Moreover, NAC inhibited proteolytic activity of MMPs and reduced PG release.

CONCLUSION: In the context of this ex vivo study, we showed not only remarkable cell- and chondroprotective features, but also revealed new encouraging findings concerning the therapeutically effective concentration and treatment-time regimen of NAC. Its defense against chondrocyte apoptosis and catabolic enzyme secretion recommends NAC as a multifunctional add-on reagent for pharmaceutical intervention after cartilage injury. Taken together, our data increase the knowledge on the therapeutic potential of NAC after cartilage trauma and presents a basis for future in vivo studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app