Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Planaria as a Model System for the Analysis of Ciliary Assembly and Motility.

Planarian flatworms are carnivorous invertebrates with astounding regenerative properties. They have a ventral surface on which thousands of motile cilia are exposed to the extracellular environment. These beat in a synchronized manner against secreted mucus thereby propelling the animal forward. Similar to the nematode Caenorhabditis elegans, the planarian Schmidtea mediterranea is easy to maintain in the laboratory and is highly amenable to simple RNAi approaches through feeding with dsRNA. The methods are simple and robust, and the level of gene expression reduction that can be obtained is, in many cases, almost total. Moreover, cilia assembly and function is not essential for viability in this organism, as animals readily survive for weeks even with the apparent total absence of this organelle. Both genome and expressed sequence tag databases are available and allow design of vectors to target any desired gene of choice. Combined, these feature make planaria a useful model system in which to examine ciliary assembly and motility, especially in the context of a ciliated epithelium where many organelles beat in a hydrodynamically coupled synchronized manner. In addition, as planaria secrete mucus against which the cilia beat to generate propulsive force, this system may also prove useful for analysis of mucociliary interactions. In this chapter, we provide simple methods to maintain a planarian colony, knockdown gene expression by RNAi, and analyze the resulting animals for whole organism motility as well as ciliary architecture and function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app