Add like
Add dislike
Add to saved papers

Stimulation of Eryptosis by Caspofungin.

BACKGROUND/AIMS: The echinocandin antifungal agent caspofungin has been shown to trigger apoptosis of fungal cells. Beyond that, caspofungin is toxic for host mitochondria. Even though lacking mitochondria, erythrocytes may enter apoptosis-like suicidal erythrocyte death or eryptosis, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Signaling involved in triggering of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress, ceramide, caspase activation and/or activation of p38 kinase, protein kinase C, and casein kinase. The present study explored, whether caspofungin induces eryptosis and, if so, to shed some light on the cellular mechanisms involved.

METHODS: Flow cytometry was employed to determine phosphatidylserine exposure at the cell surface from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ROS formation from DCFDA dependent fluorescence, and ceramide abundance utilizing specific antibodies. Hemolysis was quantified from hemoglobin concentration in the supernatant.

RESULTS: A 48 hours exposure of human erythrocytes to caspofungin (≥ 30 µg/ml) significantly increased the percentage of annexin-V-binding cells, significantly decreased forward scatter, significantly enhanced hemolysis, but did not significantly increase Fluo3-fluorescence, DCFDA fluorescence or ceramide abundance. The effect of caspofungin on annexin-V-binding was not significantly blunted by removal of extracellular Ca2+, by inhibition of caspases with pancaspase inhibitor zVAD (10 µM), or by addition of the antioxidant N-acetyl-cysteine (1 mM), p38 kinase inhibitor SB203580 (2 µM) or protein kinase C inhibitor staurosporine (1 µM). The effect of caspofungin on annexin-V-binding was, however, significantly blunted in the presence of casein kinase inhibitor D4476 (10 µM).

CONCLUSIONS: Caspofungin triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect possibly involving activation of casein kinase.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app