Add like
Add dislike
Add to saved papers

Mechanical response of all-MoS2 single-layer heterostructures: a ReaxFF investigation.

Molybdenum disulfide (MoS2) is a highly attractive 2D material due to its interesting electronic properties. Recent experimental advances confirm the possibility of further tuning the electronic properties of MoS2 through the fabrication of single-layer heterostructures consisting of semiconducting (2H) and metallic (1T) MoS2 phases. Nonetheless, despite significant technological and scientific interest, there is currently limited information concerning the mechanical properties of these heterostructure systems. This investigation aims at extending our understanding of the mechanical properties of all-MoS2 single-layer structures at room temperature. This goal was achieved by performing extensive classical molecular dynamics simulations using a recently developed ReaxFF force field. We first studied the direction dependent mechanical properties of defect-free 2H and 1T phases. Our modelling results for pristine 2H MoS2 were found to be in good agreement with the experimental tests and first-principles theoretical predictions. We also discuss the mechanical response of 2H/1T single layer heterostructures. Our reactive molecular dynamics results suggest all-MoS2 heterostructures as suitable candidates for providing a strong and flexible material with tuneable electronic properties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app