JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Effects of Oxygen Impurities on Glass-Formation Ability in Zr2Cu Alloy.

Using ab initio molecular dynamics simulations, we show that oxygen (O) impurities have a noticeable influence on the glass-formation ability (GFA) in Zr2Cu alloy. Cu-centered icosahedral clusters and Zr-centered Kasper polyhedra are the dominate short-range orders in undercooled Zr2Cu liquid which are most likely to be responsible for the glass formation in Zr2Cu systems. When O is introduced, a Zr octahedron is formed around the O impurity. Most of the Zr atoms in the octahedron also serve as the bridging atoms for cross-linked Kasper polyhedral network, resulting in an O-centered medium range order (MRO) structure. Meanwhile, Cu atoms are moved away from the first shell of O-centered octahedral clusters. With 1 at. % O impurities, the fractions of Zr-centered clusters are less affected, while the increase of ideal icosahedral order and decrease of distorted icosahedral order lead to a more stable atomic structure. This result suggests that a low concentration of O impurities would improve the GFA in Zr2Cu alloy. However, when ∼5 at. % O impurities are included, the ideal icosahedral clusters and Zr-centered Kasper polyhedra are seriously suppressed by the formation of O-centered MRO, which can lead to deterioration of GFA. Our analyses provide useful insight into glass formation behavior in O-doped metallic alloy systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app