Add like
Add dislike
Add to saved papers

Automated identification of antibiotic overdoses and adverse drug events via analysis of prescribing alerts and medication administration records.

Objectives: Electronic trigger detection tools hold promise to reduce Adverse drug event (ADEs) through efficiencies of scale and real-time reporting. We hypothesized that such a tool could automatically detect medication dosing errors as well as manage and evaluate dosing rule modifications.

Materials and Methods: We created an order and alert analysis system that identified antibiotic medication orders and evaluated user response to dosing alerts. Orders associated with overridden alerts were examined for evidence of administration and the delivered dose was compared to pharmacy-derived dosing rules to confirm true overdoses. True overdose cases were reviewed for association with known ADEs.

Results: Of 55 546 orders reviewed, 539 were true overdose orders, which lead to 1965 known overdose administrations. Documentation of loose stools and diarrhea was significantly increased following drug administration in the overdose group. Dosing rule thresholds were altered to reflect clinically accurate dosing. These rule changes decreased overall alert burden and improved the salience of alerts.

Discussion: Electronic algorithm-based detection systems can identify antibiotic overdoses that are clinically relevant and are associated with known ADEs. The system also serves as a platform for evaluating the effects of modifying electronic dosing rules. These modifications lead to decreased alert burden and improvements in response to decision support alerts.

Conclusion: The success of this test case suggests that gains are possible in reducing medication errors and improving patient safety with automated algorithm-based detection systems. Follow-up studies will determine if the positive effects of the system persist and if these changes lead to improved safety outcomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app