Add like
Add dislike
Add to saved papers

Bmal1 induces osteoblast differentiation via regulation of BMP2 expression in MC3T3-E1 cells.

Life Sciences 2016 October 2
AIMS: Mammalian circadian rhythms regulate many metabolic processes. Recent studies suggest that brain and muscle Arnt-like 1 (BMAL1), an important component of mammalian circadian rhythm, is associated with insulin signaling. Several studies have shown that insulin is associated with bone metabolism; however, the relationship between BMAL1 and osteoblasts remains unclear.

MAIN METHODS: Expression of osteogenic markers and Bmal1 in MC3T3-E1 cells was measured by RT-PCR and Western blotting. Alizarin red S staining was performed to assess matrix mineralization in MC3T3-E1 cells.

KEY FINDINGS: mRNA levels of osteogenic genes and Bmal1 were up-regulated in MC3T3-E1 cells upon insulin treatment. In addition, Bmal1 overexpression increased the expression of osteogenic genes including inhibitor of DNA binding (Id1), Runt-related transcription factor 2 (Runx2), and osteocalcin (OC). Interestingly, expression of Bone morphogenetic protein-2 (BMP2), an important upstream factor of Id1, Runx2, and OC, was markedly increased by Bmal1. Finally, we confirmed that insulin-induced BMP2 expression was attenuated in Bmal1 knockout (KO) cells. PCR analysis and alizarin red S staining showed that insulin-mediated increases gene expression and calcium deposition were reduced in Bmal1 KO cells compared to wild-type cells.

SIGNIFICANCE: Taken together, these results demonstrate that Bmal1 promotes osteoblast differentiation by regulating BMP2 expression in MC3T3-E1 cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app