Add like
Add dislike
Add to saved papers

Localization of the Reflection Sources of Stimulus-Frequency Otoacoustic Emissions.

The generation of stimulus-frequency otoacoustic emission (SFOAE) residuals in humans is analyzed both theoretically and experimentally to investigate the relation between the frequency difference between the probe and the suppressor tone and the localization of the residual source. Experimental measurements of the SFOAE residual were performed using suppressors of increasing frequency to separate the otoacoustic response from the probe stimulus. From the response to the probe alone, the SFOAE response was also estimated, using spectral smoothing, and compared with the residuals obtained for different frequency suppressors. A nonlinear delayed-stiffness active cochlear model was used to compute the spatial distribution of the residual sources according to a recent model of the local reflectivity from roughness, as a function of the suppressor frequency. The simulations clarified the role of high-frequency suppressors, showing that in humans, with increasing suppressor frequency, the generation region of the residual is only slightly basally shifted with respect to the case of a near-frequency suppressor, near the basal edge of the peak of the resonant basilar membrane response. As a consequence, the hierarchy among different-delay components correspondingly changes, gradually favoring short-delay components, with increasing suppressor frequency. Good agreement between the experimental and theoretical dependence of the level of otoacoustic components of different delay on the frequency shift between probe and suppressor confirms the validity of this interpretation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app