Add like
Add dislike
Add to saved papers

A novel photoelectrochemical biosensor for protein kinase activity assay based on phosphorylated graphite-like carbon nitride.

Analytica Chimica Acta 2016 August 32
Protein kinases are general and significant regulators in the cell signaling pathway, and it is still greatly desired to achieve simple and quick kinase detection. Herein, we develop a simple and sensitive photoelectrochemical strategy for the detection of protein kinase activity based on the bond between phosphorylated peptide and phosphorylated graphite-like carbon nitride (P-g-C3N4) conjugates triggered by Zr(4+) ion coordination. Under optimal conditions, the increased photocurrent is proportional to the protein kinase A (PKA) concentration ranging from 0.05 to 50 U/mL with a detection limit of 0.077 U/mL. Moreover, this photoelectrochemical assay can be also applied to quantitative analysis of kinase inhibition. The results indicated that the IC50 value (inhibitor concentration producing 50% inhibitor) for ellagic acid was 9.1 μM. Moreover, the developed method is further applied to detect PKA activity in real samples, which contains serum from healthy person and gastric cancer patients and breast tissue from healthy person and breast cancer patients. Therefore, the established protocol provides a new and simple tool for assay of kinase activity and its inhibitors with low cost and high sensitivity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app