Add like
Add dislike
Add to saved papers

[Effects of Thermophilic Composting on Antibiotic Resistance Genes (ARGs) of Swine Manure Source].

To investigate the effects of thermophilic composting process on antibiotic resistance genes (ARGs) of swine manure source at a field scale, the abundance of four erythromycin resistance genes (ermA, ermB, ermC and ermF), three β-lactam resistance genes (blaTEM, blaCTX and blaSHV) and two quinolone resistance genes (qnrA and qnrS) were quantified by quantitative PCR ( qPCR) during the composting process. The results suggested that the erm genes' copy numbers were significantly higher than those of the bla and qnr genes in the early stage of composting (P < 0.01). The maximum abundance of erm genes was ermB (9.88 x 10⁸ copies · g⁻¹), following by ermF (9.4 x 10⁸ copies · g⁻¹). At the end of the composting process, bla and qnr genes were at low levels, while erm genes were still at high levels. Even through ermF was proliferated comparing with the initial copies. These results indicated that thermophilic composting process could not effectively remove all ARGs. For some ARGs, compost may be a good bioreactor resulting in their proliferation. Application of composting products on farmland may cause transference of ARGs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app