Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Formation of Interfacial Janus Nanomicelles by Reactive Blending and Their Compatibilization Effects on Immiscible Polymer Blends.

Micellization of in situ formed graft copolymers during reactive blending is commonly observed. Numerous studies have been carried out to minimize the formation of micelles and enhance emulsification efficiency. Herein, we investigated the formation of interfacial Janus nanomicelles (JNMs) and their compatibilization effects on immiscible polymer blends when reactive graft copolymers (RGCs) are used as compatibilizers. Poly(styrene-co-glycidyl methacrylate)-graft-poly(methyl methacrylate) RGCs were synthesized and used as compatibilizers for immiscible poly(l-lactide) (PLLA)/poly(vinylidene fluoride) (PVDF) blends. Numerous nanomicelles were formed in situ during melt blending by grafting of PLLA onto the RGCs. The formation and location of JNMs depended not only on the molecular architecture of the RGCs but also on the melt processing sequence and molecular weight of the components. Interfacial JNMs can effectively improve the miscibility of polymer blends, thereby enhancing the performance of immiscible polymer blends.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app