Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Oxazolinyl derivatives of [17(20)E]-21-norpregnene differing in the structure of A and B rings. Facile synthesis and inhibition of CYP17A1 catalytic activity.

Steroids 2016 November
Five 4,5-dihydro-1,3-oxazole derivatives of [17(20)E]-21-norpregnene, comprising 3β-hydroxy-5-ene (1), 3,6-dioxo-4-ene (2), 3-oxo-4-ene (3), 3α,5α-cyclo-6-oxo (4), 3β-hydroxy-6-oxo (5) fragments were synthesized. Synthesis was conducted with improved procedure, based on reaction of suitably protected [17(20)E]-pregnen-21-oic acids with ethanolamine in presence of triphenyl phosphine, carbon tetrachloride, and triethyl amine. Potency of the compounds 1-5 to inhibit 17α-hydroxylase/17,20-lyase (CYP17A1) activity was studied by highly sensitive electrochemical method, using the enzyme immobilization technique. Compounds 1 and 3 were found to be potent CYP17A1 inhibitors, compounds 2 and 5 were not active, compound 4 strongly and irreversibly suppressed the enzyme activity. Molecular docking of compounds 1-5 in the active site of CYP17A1 showed that positions of all compounds in the enzyme active site were similar.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app