Journal Article
Validation Studies
Add like
Add dislike
Add to saved papers

Enzymatic assays for detecting lactose and sucrose in urine to reveal intravenous drug abuse with emphasis on buprenorphine.

Buprenorphine and methadone are commonly used medications for opioid maintenance treatment (OMT), using sublingual and oral administration, respectively. Although beneficial for OMT, these drugs can also be abused by intravenous administration. In intravenous abuse cases, the adjuvants lactose and sucrose are excreted in urine without hydrolysis to monosaccharides, since there are no disaccharidases in the blood. We validated enzymatic methods for the analysis of lactose and sucrose in urine. The analytical performance of both assays was considered appropriate for detecting intravenous drug abuse. The principle was proven by analyzing 93 postmortem (PM) urine samples for lactose, following comprehensive toxicological drug screening. In addition, 32 clinical urine samples from potential drug abusers were analyzed to assess the effect of PM changes on the assay. The mean level of lactose was low in clinical samples and relatively low in PM samples in which no drugs were found. Markedly elevated levels were seen in many of the buprenorphine positive samples, suggesting intravenous administration. Enzymatic methods could provide a simple and cost effective way to assess the intravenous administration of OMT drugs or drugs of abuse. Very high levels of glucose in urine may interfere with the assays. Furthermore, other causes for elevated urine disaccharides, such as hypolactasia and increased intestinal permeability, need to be considered in the interpretation of the results. Copyright © 2016 John Wiley & Sons, Ltd.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app