JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Metabolism of poplar salicinoids by the generalist herbivore Lymantria dispar (Lepidoptera).

The survival of insect herbivores on chemically defended plants may often depend on their ability to metabolize these defense compounds. However, only little knowledge is available on how insects actually process most plant defense compounds. We investigated the metabolism of salicinoids, a major group of phenolic glycosides in poplar and willow species, by a generalist herbivore, the gypsy moth (Lymantria dispar). Seven salicinoid metabolites identified in gypsy moth caterpillar feces were mostly conjugates with glucose, cysteine or glycine. Two of the glucosides were phosphorylated, a feature not previously reported for insect metabolites of plant defense compounds. The origins of these metabolites were traced to specific moieties of three major poplar salicinoids ingested, salicin, salicortin and tremulacin. Based on the observed metabolite patterns we were able to deduce the initial steps of salicinoid breakdown in L. dispar guts, which involves cleavage of ester bonds. The conjugated molecules were effectively eliminated within 24 h after ingestion. Some of the initial breakdown products (salicin and catechol) demonstrated negative effects on insect growth and survival in bioassays on artificial diets. Gypsy moth caterpillars with prior feeding experience on salicinoid-containing poplar foliage converted salicinoids to the identified metabolites more efficiently than caterpillars pre-fed an artificial diet. The majority of the metabolites we identified were also produced by other common poplar-feeding insects. The conversion of plant defenses like salicinoids to a variety of water-soluble sugar, phosphate and amino acid conjugates and their subsequent excretion fits the general detoxification strategy found in insect herbivores and other animals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app