Add like
Add dislike
Add to saved papers

Use of mixed solid waste as a soil amendment for saline-sodic soil remediation and oat seedling growth improvement.

Soil salinization has become a worldwide problem that imposes restrictions on crop production and food quality. This study utilizes a soil column experiment to address the potential of using mixed solid waste (vinegar residue, fly ash, and sewage sludge) as soil amendment to ameliorate saline-sodic soil and enhance crop growth. Mixed solid waste with vinegar residue content ranging from 60-90 %, sewage sludge of 8.7-30 %, and fly ash of 1.3-10 % was added to saline-sodic soil (electrical conductivity (EC1:5) = 1.83 dS m(-1), sodium adsorption ratio (SAR1:5) = 129.3 (mmolc L(-1))(1/2), pH = 9.73) at rates of 0 (control), 130, 260, and 650 kg ha(-1). Results showed that the application of waste amendment significantly reduced SAR, while increasing soil soluble K(+), Ca(2+), and Mg(2+), at a dose of 650 kg ha(-1). The wet stability of macro-aggregates (>1 mm) was improved 90.7-133.7 % when the application rate of amendment was greater than 260 kg ha(-1). The application of this amendment significantly reduced soil pH. Germination rates and plant heights of oats were improved with the increasing rate of application. There was a positive correlation between the percentage of vinegar residue and the K/Na ratio in the soil solutions and roots. These findings suggest that applying a mixed waste amendment (vinegar residue, fly ash, and sewage sludge) could be a cost-effective method for the reclamation of saline-sodic soil and the improvement of the growth of salt-tolerant plants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app