Add like
Add dislike
Add to saved papers

Curcumin attenuates osteogenic differentiation and calcification of rat vascular smooth muscle cells.

Vascular calcification has been considered as a biological process resembling bone formation involving osteogenic differentiation. It is a major risk factor for cardiovascular morbidity and mortality. Previous studies have shown the protective effects of curcumin on cardiovascular diseases. However, whether curcumin has effects on osteogenic differentiation and calcification of vascular smooth muscle cells (VSMCs) has not been reported. In the present study, we used an in vitro model of VSMC calcification to investigate the role of curcumin in the progression of rat VSMC calcification. Curcumin treatment significantly reduced calcification of VSMCs in a dose-dependent manner, detected by alizarin red staining and calcium content assay. Similarly, ALP activity and expression of bone-related molecules including Runx2, BMP2, and Osterix were also decreased in VSMCs treated with curcumin. In addition, flow cytometry analysis and caspase-3 activity assay revealed that curcumin treatment significantly suppressed apoptosis of VSMCs, which plays an important role during vascular calcification. Furthermore, we found that pro-apoptotic molecules including p-JNK and Bax were up-regulated in VSMCs treated with calcifying medium, but they were reduced in VSMCs after curcumin treatment. However, curcumin treatment has no effect on expression of NF-κB p65. Taken together, these findings suggest that curcumin attenuates apoptosis and calcification of VSMCs, presumably via inhibition of JNK/Bax signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app