Add like
Add dislike
Add to saved papers

Dipeptide-Based Carbohydrate Receptors and Polymers for Glycopeptide Enrichment and Glycan Discrimination.

Glycoproteomics identifies and catalogs protein glycosylation and explores its impact on protein conformations and biofunctions. However, these studies are restricted by the bottleneck to enrich low-abundance glycopeptides from complex biosamples and the difficulties in analyzing glycan structures by mass spectrometry. Here, we report dipeptide as a simple but promising carbohydrate binding platform to tackle these problems. We build a hydropathy-index-based strategy for sequence optimization and screen out three optimal dipeptide sequences from 54 types of dipeptides. The optimized dipeptide-based homopolymers display excellent performance (e.g., selectivity up to ∼70% for real biosamples and strong anti-interference capacity capable of resisting 1000-fold bovine serum albumin interference) in glycopeptide enrichment. Meanwhile, our polymers exhibit high-efficiency chromatographic separation toward oligosaccharides with different compositions, polymerization degrees and even their linkage isomers. This brings another attractive feature that our materials can discriminate subtly variable glycan structures of glycopeptides, especially, isomeric glycosidic linkages. These features provide a solid foundation to analyze the complex glycan structures and glycosites simultaneously, which will benefit future development of glycoproteomics and glycobiology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app