Add like
Add dislike
Add to saved papers

Significance of groundwater flux on contaminant concentration and mass discharge in the nonaqueous phase liquid (NAPL) contaminated zone.

Groundwater flowing through residual nonaqueous phase liquid (NAPL) source zone will cause NAPL dissolution and generate large contaminant plume. The use of contaminant mass discharge (CMD) measurements in addition to NAPL aqueous phase concentration to characterize site conditions and assess remediation performance is becoming popular. In this study, we developed new and generic numerical models to investigate the significance of groundwater flux temporal variations on the NAPL source dynamics. The developed models can accommodate any temporal variations of groundwater flux in the source zone. We examined the various features of groundwater flux using a few selected functional forms of linear increase/decrease, gradual smooth increase/decrease, and periodic fluctuations with a general trend. Groundwater flux temporal variations have more pronounced effects on the contaminant mass discharge dynamics than the aqueous concentration. If the groundwater flux initially increases, then the reduction in contaminant mass discharge (CMDR) vs. NAPL mass reduction (MR) relationship is mainly downward concave. If the groundwater flux initially decreases, then CMDR vs. MR relationship is mainly upward convex. If the groundwater flux variations are periodic, the CMDR vs. MR relationship tends to also have periodic variations ranging from upward convex to downward concave. Eventually, however, the CMDR vs. MR relationship approaches 1:1 when majority of the NAPL mass becomes depleted.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app