JOURNAL ARTICLE
VIDEO-AUDIO MEDIA
Add like
Add dislike
Add to saved papers

Protocol for the Direct Conversion of Murine Embryonic Fibroblasts into Trophoblast Stem Cells.

Trophoblast stem cells (TSCs) arise as a consequence of the first cell fate decision in mammalian development. They can be cultured in vitro, retaining the ability to self-renew and to differentiate into all subtypes of the trophoblast lineage, equivalent to the in vivo stem cell population giving rise to the fetal portion of the placenta. Therefore, TSCs offer a unique model to study placental development and embryonic versus extra-embryonic cell fate decision in vitro. From the blastocyst stage onwards, a distinct epigenetic barrier consisting of DNA methylation and histone modifications tightly separates both lineages. Here, we describe a protocol to fully overcome this lineage barrier by transient over-expression of trophoblast key regulators Tfap2c, Gata3, Eomes and Ets2 in murine embryonic fibroblasts. The induced trophoblast stem cells are able to self-renew and are almost identical to blastocyst derived trophoblast stem cells in terms of morphology, marker gene expression and methylation pattern. Functional in vitro and in vivo assays confirm that these cells are able to differentiate along the trophoblast lineage generating polyploid trophoblast giant cells and chimerizing the placenta when injected into blastocysts. The induction of trophoblast stem cells from somatic tissue opens new avenues to study genetic and epigenetic characteristics of this extra-embryonic lineage and offers the possibility to generate trophoblast stem cell lines without destroying the respective embryo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app