Journal Article
Research Support, Non-U.S. Gov't
Video-Audio Media
Add like
Add dislike
Add to saved papers

Large-Scale Production of Cardiomyocytes from Human Pluripotent Stem Cells Using a Highly Reproducible Small Molecule-Based Differentiation Protocol.

Maximizing the benefit of human pluripotent stem cells (hPSCs) for research, disease modeling, pharmaceutical and clinical applications requires robust methods for the large-scale production of functional cell types, including cardiomyocytes. Here we demonstrate that the temporal manipulation of WNT, TGF-β, and SHH signaling pathways leads to highly efficient cardiomyocyte differentiation of single-cell passaged hPSC lines in both static suspension and stirred suspension bioreactor systems. Employing this strategy resulted in ~ 100% beating spheroids, consistently containing > 80% cardiac troponin T-positive cells after 15 days of culture, validated in multiple hPSC lines. We also report on a variation of this protocol for use with cell lines not currently adapted to single-cell passaging, the success of which has been verified in 42 hPSC lines. Cardiomyocytes generated using these protocols express lineage-specific markers and show expected electrophysiological functionalities. Our protocol presents a simple, efficient and robust platform for the large-scale production of human cardiomyocytes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app