Add like
Add dislike
Add to saved papers

Genome-assisted Breeding For Drought Resistance.

Current Genomics 2016 August
Drought stress caused by unpredictable precipitation poses a major threat to food production worldwide, and its impact is only expected to increase with the further onset of climate change. Understanding the effect of drought stress on crops and plants' response is critical for developing improved varieties with stable high yield to fill a growing food gap from an increasing population depending on decreasing land and water resources. When a plant encounters drought stress, it may use multiple response types, depending on environmental conditions, drought stress intensity and duration, and the physiological stage of the plant. Drought stress responses can be divided into four broad types: drought escape, drought avoidance, drought tolerance, and drought recovery, each characterized by interacting mechanisms, which may together be referred to as drought resistance mechanisms. The complex nature of drought resistance requires a multi-pronged approach to breed new varieties with stable and enhanced yield under drought stress conditions. High throughput genomics and phenomics allow marker-assisted selection (MAS) and genomic selection (GS), which offer rapid and targeted improvement of populations and identification of parents for rapid genetic gains and improved drought-resistant varieties. Using these approaches together with appropriate genetic diversity, databases, analytical tools, and well-characterized drought stress scenarios, weather and soil data, new varieties with improved drought resistance corresponding to grower preferences can be introduced into target regions rapidly.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app