Add like
Add dislike
Add to saved papers

Iron depletion-induced downregulation of N-cadherin expression inhibits invasive malignant phenotypes in human esophageal cancer.

Esophageal carcinomas often have a poor prognosis due to early lymph node metastasis. Epithelial-mesenchymal transition (EMT) is strongly associated with the acquisition of cancer metastasis and invasion. However, there is no established treatment to eliminate the EMT of cancer cells. Iron is an essential element for both normal and cancer cells in humans. Recently, iron depletion has been discovered to suppress tumor growth. Therefore, we hypothesized that decreased iron conditions would regulate EMT phenotypes, as well as suppressing tumor growth. The human TE esophageal cancer cell lines and OE19 were used in our study. Decreased iron conditions were made using an iron-depletion diet in mice and the iron chelator deferasirox for cell studies. Migration and invasion abilities of cells were measured using migration, invasion, and sphere-formation assays. Esophageal subcutaneous tumor growth was suppressed in decreased iron conditions. In vitro study showed that decreased iron conditions inhibited esophageal cancer cell proliferation as well as migration and invasion abilities, with downregulation of N-cadherin expression. Also, migration and invasion abilities were suppressed by inhibiting expression of N-cadherin. In conclusion, decreased iron conditions revealed a profound anticancer effect by the suppression of tumor growth and the inhibition of migration and invasion abilities via N-cadherin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app