Add like
Add dislike
Add to saved papers

Streptococcus agalactiae from pregnant women: antibiotic and heavy-metal resistance mechanisms and molecular typing.

We investigated the antibiotic and heavy-metal resistance mechanisms, virulence genes and clonal relationships of macrolide- and/or lincosamide-resistant (M+/-LR) Streptococcus agalactiae (group B Streptococcus, GBS) isolates from pregnant women in La Rioja in Northern Spain, a region with a significant immigrant population. In total 375 GBS isolates were recovered during 2011. About three-quarters of isolates were from European nationals and the remainder distributed among 23 other nationalities. Seventy-five (20%) were classified as M+/-LR strains and 28 (37%) of these were resistant to ⩾3 classes of antibiotics. Capsular serotypes III (29·3%), V (21·3%) and II (12%) were the most frequent. A wide variety of antibiotic resistance genes were detected in M+/-LR strains; notably, 5·3% harboured the lsa(C) gene associated with cross-resistance, and tet(W) was identified in a single strain. We report, for the first time, the detection of cadmium and copper resistance encoded by tcrB + cadA + cadC genes in 20 M+/-LR strains, which raises the possibility of co-selection of antibiotic and heavy-metal resistance disseminated through mobile genetic elements. The M+/-LR strains were highly diverse by DNA macrorestriction profiles (65 patterns) and 16 multilocus sequence types (STs) distributed among six clonal complexes; the most frequent were ST1, ST19, and ST12, and two strains were novel (ST586 and ST601). In conclusion, a wide diversity of genetic lineages of macrolide, lincosamide and heavy-metal- resistant GBS strains was observed in an ethnically diverse maternal population.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app