Add like
Add dislike
Add to saved papers

A Stenohaline Medaka, Oryzias woworae, Increases Expression of Gill Na(+), K(+)-ATPase and Na(+), K(+), 2Cl(-) Cotransporter 1 to Tolerate Osmotic Stress.

Zoological Science 2016 August
The present study aimed to evaluate the osmoregulatory mechanism of Daisy's medaka, O. woworae,as well as demonstrate the major factors affecting the hypo-osmoregulatory characteristics of euryhaline and stenohaline medaka. The medaka phylogenetic tree indicates that Daisy's medaka belongs to the celebensis species group. The salinity tolerance of Daisy's medaka was assessed. Our findings revealed that 20‰ (hypertonic) saltwater (SW) was lethal to Daisy's medaka. However, 62.5% of individuals survived 10‰ (isotonic) SW with pre-acclimation to 5‰ SW for one week. This transfer regime, "Experimental (Exp.) 10‰ SW", was used in the following experiments. After 10‰ SW-transfer, the plasma osmolality of Daisy's medaka significantly increased. The protein abundance and distribution of branchial Na(+), K(+)-ATPase (NKA) and Na(+), K(+), 2Cl(-) cotransporter 1 (NKCC1) were also examined after transfer to 10‰ SW for one week. Gill NKA activity increased significantly after transfer to 10‰ SW. Meanwhile, elevation of gill NKA αα-subunit protein-abundance was found in the 10‰ SW-acclimated fish. In gill cross-sections, more and larger NKA-immunoreactive (NKA-IR) cells were observed in the Exp. 10‰ SW medaka. The relative abundance of branchial NKCC1 protein increased significantly after transfer to 10‰ SW. NKCC1 was distributed in the basolateral membrane of NKA-IR cells of the Exp. 10‰ SW group. Furthermore, a higher abundance of NKCC1 protein was found in the gill homogenates of the euryhaline medaka, O. dancena, than in that of the stenohaline medaka, O. woworae.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app