Add like
Add dislike
Add to saved papers

Physicochemical sequence characteristics that influence S-palmitoylation propensity.

Over the past 30 years, several hundred eukaryotic proteins spanning from yeast to man have been shown to be S-palmitoylated. This post-translational modification involves the reversible addition of a 16-carbon saturated fatty acyl chain onto the cysteine residue of a protein where it regulates protein membrane association and distribution, conformation, and stability. However, the large-scale proteome-wide discovery of new palmitoylated proteins has been hindered by the difficulty of identifying a palmitoylation consensus sequence. Using a bioinformatics approach, we show that the enrichment of hydrophobic and basic residues, the cellular context of the protein, and the structural features of the residues surrounding the palmitoylated cysteine all influence the likelihood of palmitoylation. We developed a new palmitoylation predictor that incorporates these identified features, and this predictor achieves a Matthews Correlation Coefficient of .74 using 10-fold cross validation, and significantly outperforms existing predictors on unbiased testing sets. This demonstrates that palmitoylation sites can be predicted with accuracy by taking into account not only physiochemical properties of the modified cysteine and its surrounding residues, but also structural parameters and the subcellular localization of the modified cysteine. This will allow for improved predictions of palmitoylated residues in uncharacterized proteins. A web-based version of this predictor is currently under development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app