Add like
Add dislike
Add to saved papers

Characterization of a heat-resistant extracellular protease from Pseudomonas fluorescens 07A shows that low temperature treatments are more effective in deactivating its proteolytic activity.

This work discusses the biological and biochemical characterization of an extracellular protease produced by Pseudomonas fluorescens. The enzyme has a molecular weight of 49.486 kDa and hydrolyzes gelatin, casein, and azocasein, but not BSA. Its maximum activity is found at 37°C and pH 7.5, but it retained almost 70% activity at pH 10.0. It was shown to be a metalloprotease inhibited by Cu(2+), Ni(2+), Zn(2+), Hg(2+), Fe(2+), and Mg(2+), but induced by Mn(2+). After incubation at 100°C for 5min, the enzyme presented over 40% activity, but only 14 to 30% when submitted to milder heat treatments. This behavior may cause significant problems under conditions commonly used for the processing and storage of milk and dairy products, particularly UHT milk. A specific peptide sequenced by mass spectrometer analysis allowed the identification of gene that encodes this extracellular protease in the genome of Pseudomonas fluorescens 07A strain. The enzyme has 477 AA and highly conserved Ca(2+)- and Zn(2+)-binding domains, indicating that Ca(2+), the main ion in milk, is also a cofactor. This work contributes to the understanding of the biochemical aspects of enzyme activity and associates them with its sequence and structure. These findings are essential for the full understanding and control of these enzymes and the technological problems they cause in the dairy industry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app