Add like
Add dislike
Add to saved papers

An in silico study of the effect of SOD1 electrostatic loop dynamics on amyloid‑like filament formation.

Superoxide dismutase [Cu-Zn], or SOD1, is a homo-dimeric protein that functions as an antioxidant by scavenging for superoxides. A wide range of SOD1 variants are linked to inherited, or familial, amyotrophic lateral sclerosis, a progressive and fatal neurodegenerative disease. Aberrant SOD1 oligomerization has been strongly implicated in disease causation, even for sporadic ALS, or SALS, which accounts for ~90 % of ALS cases. Small heat shock proteins (sHSP) have been shown to protect against amyloid fibril formation in vitro, and the sHSP αB-crystallin suppresses in vitro aggregation of SOD1. We are seeking to elucidate the structural features of both SOD1 amyloid formation and αB-crystallin amyloid suppression. Specifically, we have used a flexible docking protocol to refine our model of a SOD1 non-obligate tetramer, postulated to function as a transient desolvating complex. Homology modeling and molecular dynamics (MD) are used to supply the missing structural elements of a previously characterized SOD1 amyloid filament, thereby providing a structural analysis for the observed gain of interaction. This completed filament is then further modified using MD to provide a structural model for protofibril capping of SOD1 filaments by αB-crystallin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app