Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Role of Glycosyltransferases in Pollen Wall Primexine Formation and Exine Patterning.

Plant Physiology 2017 January
The pollen cell wall is important for protection of male sperm from physical stresses and consists of an inner gametophyte-derived intine layer and a sporophyte-derived exine layer. The polymeric constituents of the robust exine are termed sporopollenin. The mechanisms by which sporopollenin is anchored onto microspores and polymerized in specific patterns are unknown, but the primexine, a transient cell wall matrix formed on the surface of microspores at the late tetrad stage, is hypothesized to play a key role. Arabidopsis (Arabidopsis thaliana) spongy (spg) and uneven pattern of exine (upex) mutants exhibit defective and irregular exine patterns. SPG2 (synonymous with IRREGULAR XYLEM9-LIKE [IRX9L]) encodes a family GT43 glycosyltransferase involved in xylan backbone biosynthesis, while UPEX1 encodes a family GT31 glycosyltransferase likely involved in galactosylation of arabinogalactan proteins. Imaging of developing irx9l microspores showed that the earliest detectable defect was in primexine formation. Furthermore, wild-type microspores contained primexine-localized epitopes indicative of the presence of xylan, but these were absent in irx9l These data, together with the spg phenotype of a mutant in IRX14L, which also plays a role in xylan backbone elongation, indicate the presence of xylan in pollen wall primexine, which plays a role in exine patterning on the microspore surface. We observed an aberrant primexine and irregular patterns of incipient sporopollenin deposition in upex1, suggesting that primexine-localized arabinogalactan proteins could play roles in sporopollenin adhesion and patterning early in microspore wall development. Our data provide new insights into the biochemical and functional properties of the primexine component of the microspore cell wall.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app