Add like
Add dislike
Add to saved papers

Computational strategies to explore antimalarial thiazine alkaloid lead compounds based on an Australian marine sponge Plakortis Lita.

In this work, an attempt was made to propose new leads based on the natural scaffold Thiaplakortone-A active against malaria. The 2D QSAR studies suggested that three descriptors correlate with the anti-malarial activity with an R2 value of 0.814. Robustness, reliability, and predictive power of the model were tested by internal validation, external validation, Y-scrambling, and applicability domain analysis. HQSAR studies were carried out as an additional tool to find the sub-structural fingerprints. The CoMFA and CoMSIA models gave Q2 values of 0.813 and 0.647, and [Formula: see text] values of 0.994 and 0.984, respectively. Using the 2D-QSAR equation, the activity values of the seven modified compounds were calculated and it was found that three molecules showed good anti-malarial activity. Molecular docking of the 42 Thiaplakortone-A derivatives with Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK1) was carried out to find out protein-ligand interactions. Data mining of the bioassay data-set AID: 504850 using the classifier based on Random Forest of Weka suggested that all of the eight molecules selected and three out of the seven virtual molecules were anti-malarial active. Both the virtual molecules and drug molecules were docked with CYP3A4, indicating that the virtual molecules could metabolize easily. Toxicity studies using Osiris shows that three molecules showed no toxic characters.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app