Add like
Add dislike
Add to saved papers

Effects of lipid sources, lysophospholipids and organic acids in maize-based broiler diets on nutrient balance, liver concentration of fat-soluble vitamins, jejunal microbiota and performance.

Three experiments with a 2 × 2 × 2 factorial arrangement were conducted to evaluate maize-based diets for broilers containing different lipid sources [soybean oil (S) or beef tallow (T)] supplemented with or without lysophospholipids and organic acids on nutrient balance (Experiment I, evaluation period of 10-14 d), on liver concentration of fat-soluble vitamins, on jejunal microbiota (Experiment II, sampling at d 14) and on performance (Experiment III, accumulated periods of 1-14, 1-21 and 1-42 d). A total of 1344 male chicks were used. In each experiment, the birds were allotted in a completely randomised design with 8 replications. The lysophospholipids were mainly composed of lysolecithins and the organic acids blend was constituted by lactic (40%), acetic (7%) and butyric acids (1%). An interaction between lipid sources and lysophospholipids was observed on faecal apparent digestibility of lipid (ADL), which improved with lysophospholipids addition in T diets. Broilers fed on S had higher ADL and faecal apparent digestibility of nitrogen-corrected gross energy (ADGEN). It was not possible to demonstrate a significant treatment effect on the liver concentration of vitamins A and E, even with the differences in fatty acid profile between S and T. Enterobacteria values were below the detection threshold. Lysophospholipid supplementation reduced gram-positive cocci in T-fed birds. S diets promoted lower total anaerobe counts compared with T diets, independent of additives. S diets increased BW gain and feed:gain ratio in all evaluation periods. Lysophospholipids and organic acids improved feed:gain ratio at 1-21 d in T diets. Furthermore, main effects were observed for lysophospholipids and organic acids at 1-42 d, which increased BW gain and improved feed:gain ratio, respectively. No positive interactions between additives were found.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app