Add like
Add dislike
Add to saved papers

Nitrogen Mineralization of a Loam Soil Supplemented with Organic-Inorganic Amendments under Laboratory Incubation.

The quantification of nitrogen (N) supplying capacity of organic amendments applied to a soil is of immense importance to examine synchronization, N release capacity, and fertilizer values of these added materials. The aims of the present study was to determine the potential N mineralization and subsequent nitrification of separate and combined use of poultry manure (PM), wheat straw residues (WSR), and urea N (UN) applied to a loam soil incubated periodically over 140 days period. In addition, changes in total soil N and carbon contents were also monitored during the study. Treatments included: PM100, WSR100, PM50 + WSR50, UN100, UN50 + PM50, UN50 + WSR50, UN50 + PM25 + WSR25, and a control (unfertilized). All the amendments were applied on an N-equivalent basis at the rate of 200 mg N kg(-1). Results indicated that a substantial quantity of N had been released from the added amendments into the soil mineral pool and the net cumulative N mineralized varied between 39 and 147 mg N kg(-1), lowest in the WSR and highest in the UN50 + PM50. Significant differences were observed among the amendments and the net mineral N derived from a separate and combined use of PM was greater than the other treatments. The net cumulative N nitrified (NCNN) varied between 16 and 126 mg kg(-1), highest in UN50 + PM50 treatment. On average, percentage conversion of added N into available N by different amendments varied between 21 and 80%, while conversion of applied N into NO3 (-)-N ranged between 9 and 65%, and the treatment UN50 + PM50 displayed the highest N recovery. Urea N when applied alone showed disappearance of 37% N (N unaccounted for) at the end while application of PM and WSR with UN reduced N disappearance and increased N retention in the mineral pool for a longer period. Organic amendments alone or in combination with UN improved organic matter buildup and increased soil N concentration. These results demonstrate the existence of substantial amounts of N reserves present in PM and WSR that can be utilized efficiently and effectively as potential N source for the management of nutrient poor soils and plant growth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app