Add like
Add dislike
Add to saved papers

Characterization of paramyosin and thin filaments in the smooth muscle of acorn worm, a member of hemichordates.

Paramyosin is a myosin-binding protein characteristic of invertebrate animals, while troponin is a Ca(2+)-dependent regulator of muscle contraction. Both proteins are widely distributed in protostomes, while in deuterostomes, their distribution is limited; namely, presence of paramyosin and absence of troponin are common features in echinoderm muscles, while muscles of chordates contain troponin but lack paramyosin. In this study, we examined the muscle of a hemichordate, acorn worm, to clarify whether this animal is like echinoderms or like the other deuterostome animals. We found a 100-kDa protein in the smooth muscle of acorn worm. This protein was identified with paramyosin, since the purified protein formed paracrystals with a constant axial periodicity in the presence of divalent cations as paramyosin of other animals, showed ability to interact with myosin and shared common antigenicity with echinoderm paramyosin. On the other hand, troponin band was not detected in isolated thin filaments, and the filaments increased myosin-ATPase activity in a Ca(2+)-independent manner. The results indicate that troponin is lacking in thin filaments of acorn worm muscle just as in those of echinoderms. The muscle of hemichordate acorn worm is quite similar to echinoderm muscles, but different from chordate muscles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app