Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

No difference in exogenous carbohydrate oxidation during exercise in children with and without impaired glucose tolerance.

The capacity to match carbohydrate (CHO) utilization with availability is impaired in insulin-resistant, obese adults at rest. Understanding exogenous carbohydrate (CHOexo) oxidation during exercise and its association to insulin resistance (IR) is important, especially in children at risk for type 2 diabetes. Our objective was to examine the oxidative efficiency of CHOexo during exercise in obese children with normal glucose tolerance (NGT) or impaired glucose tolerance (IGT). Children attended two visits and were identified as NGT (n = 22) or IGT (n = 12) based on 2-h oral glucose tolerance test (OGTT) glucose levels of <7.8 mmol/l or ≥7.8 mmol/l, respectively. Anthropometry, body composition, and aerobic fitness (V̇o2max) were assessed. Insulin and glucose at baseline, 30, 60, 90, and 120 min during the OGTT were used to calculate measures of insulin sensitivity. On a separate day, a (13)C-enriched CHO drink was ingested before exercise (3 × 20 min bouts) at 45% V̇o2max Breath measurements were collected to calculate CHOexo oxidative efficiency. CHOexo oxidative efficiency during exercise was similar in IGT (17.0 ± 3.6%) compared with NGT (17.1 ± 4.4%) (P = 0.90) despite lower whole body insulin sensitivity in IGT at rest (P = 0.02). Area under the curve for insulin (AUCins) measured at rest during the OGTT was greater in IGT compared with NGT (P = 0.04). The ability of skeletal muscle to utilize CHOexo was not impaired during exercise in children with IGT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app