Add like
Add dislike
Add to saved papers

A highly reproducible mice model of chronic kidney disease: Evidences of behavioural abnormalities and blood-brain barrier disruption.

Life Sciences 2016 September 16
AIMS: In the present study, a novel mice model of chronic kidney disease (CKD) was developed, and psycho-motor behavioural abnormalities, blood-brain barrier (BBB) integrity and brain histology were studied.

MAIN METHODS: Swiss albino female mice were given high adenine diet (0.3% w/w mixed with feed) for 4weeks. Serum urea and creatinine levels and renal histological studies were performed to validate the model. Psycho-motor behavioural abnormalities and neurological severity were studied. BBB integrity was assessed using Evans blue extravasation method. Nissl staining was performed to see possible morphological aberrations in brain.

KEY FINDINGS: There was a significant increase in serum urea and creatinine levels in mice given high adenine diet, and the mice had abnormal kidney morphology. Deposition of adenine and 2,8-dihydroxyadenine crystals, and increased collagen deposits in the renal tissues were found, which validate induction of CKD in the mice. Motor behavioural abnormalities, depression-like and anxiolytic behaviour and increase in neurological severity were prevalent in mice with CKD. Evans Blue dye extravasation was found to occur in the brain, which signifies disruption of BBB. However, Nissl staining did not reveal any morphological aberration in brain tissue.

SIGNIFICANCE: The present study puts forward a highly reproducible mice model of CKD validated with serum parameters and renal histopathological changes. The mice showed psycho-motor behavioural abnormalities and BBB disruption. It is a convenient model to study the disease pathology, and understanding the associated disorders, and their therapeutic interventions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app