Add like
Add dislike
Add to saved papers

The cooperativity effect in the reaction of soluble quinoprotein (PQQ-containing) glucose dehydrogenase is not due to subunit interaction but to substrate-assisted catalysis.

FEBS Journal 2016 October
Soluble quinoprotein (PQQ-containing) glucose dehydrogenase (sGDH, EC 1.1.99.35) catalyzes the oxidation of β-d-glucose to d-glucono-δ-lactone. Although sGDH has many analytical applications, the relationship between activity and substrate concentration is not well established. Previous steady-state kinetic studies revealed a negative cooperativity effect which has recently been ascribed to subunit interaction. To investigate this conclusion, stopped-flow kinetic experiments were carried out on the reaction in which oxidized enzyme (Eox ) was reduced with substrates to Ered . The appearance of Ered is observed to be preceded by formation of an intermediate enzyme form, Int, which is mono-exponentially formed from Eox . However, the rate of conversion of Int into Ered depends hyperbolically on the concentration of substrate (leading to a 35-fold stimulation in the case of glucose). Evidence is provided that substrate not only binds to Eox but also to Int and Ered as well, and that the binding to Int causes the significant stimulation of Int decay. It is proposed that a proton shuffling step is involved in the decay, which is facilitated by binding of substrate to Int. Substituting the PQQ-activating Ca by a Ba ion lowered all reaction rates but did not change the stimulation factor. In summary, the previous proposal that the cooperativity effect of sGDH is due to interaction between its substrate-loaded subunits is incorrect; it is due to substrate-assisted catalysis of the enzyme.

ENZYMES: EC 1.1.99.35 - soluble quinoprotein glucose dehydrogenase.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app