JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Gap junction as an intercellular glue: Emerging roles in cancer EMT and metastasis.

Cancer Letters 2016 October 11
Metastasis is a common phenomenon in the progression and dissemination of cancer. It is estimated that metastasis accounts for 90% cancer-related mortality. Although the formation of tumor metastasis is relatively well understood, the underlying molecular mechanisms responsible for the emergence of aggressive cancer phenotype are still elusive. Figuring out the mechanisms by which cancer cells evade from the tumor is beneficial for obtaining novel and effectively therapeutic approaches. Primary tumors are composed of various subpopulations of cells with heterogeneous metastatic characteristics and the occurrence of metastatic dissemination is mainly dependent upon the interactions between tumor and the surrounding microenvironment. Tumor microenvironment (TME) such as extracellular matrix, macrophages, fibroblasts, stem cells and endothelial cells can orchestrate events critical to tumor evolution toward metastasis. GJ serves as an important communication between tumor cells and stromal cells. Increased GJs coupling blocks metastatic potential in some cancer animal models such as breast cancer and melanoma. Besides, epithelial-to-mesenchymal transition (EMT) is also a crucial step in the metastatic process and there are signs that GJs contribute to cell adhesion and migration (the pathological feature of EMT) in breast cancer. Therefore, we propose that GJ serves as an intercellular glue to suppress EMT and cancer metastasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app