Add like
Add dislike
Add to saved papers

Texture analyses of quantitative susceptibility maps to differentiate Alzheimer's disease from cognitive normal and mild cognitive impairment.

Medical Physics 2016 August
PURPOSE: Although a number of studies have focused on finding anatomical regions in which iron concentrations are high, no study has been conducted to examine the overall variations in susceptibility maps of Alzheimer's disease (AD). The objective of this study, therefore, was to differentiate AD from cognitive normal (CN) and mild cognitive impairment (MCI) using a texture analysis of quantitative susceptibility maps (QSMs).

METHODS: The study was approved by the local institutional review board, and informed consent was obtained from all subjects. In each participant group-CN, MCI, and AD-18 elderly subjects were enrolled. A fully first-order flow-compensated 3D gradient-echo sequence was run to obtain axial magnitudes and phase images and to produce QSM data. Sagittal structural 3D T1-weighted (3DT1W) images were also obtained with the magnetization-prepared rapid acquisition of gradient-echo sequence to obtain brain tissue images. The first- and second-order texture parameters of the QSMs and 3DT1W images were obtained to evaluate group differences using a one-way analysis of covariance.

RESULTS: For the first-order QSM analysis, mean, standard deviation, and covariance of signal intensity separated the subject groups (F = 5.191, p = 0.009). For the second-order analysis, angular second moment, contrast, and correlation separated the subject groups (F = 6.896, p = 0.002). Finally, a receiver operating characteristic curve analysis differentiated MCI from CN in white matter on the QSMs (z = 3.092, p = 0.0020).

CONCLUSIONS: This was the first study to evaluate the textures of QSM in AD, which overcame the limitations of voxel-based analyses. The QSM texture analysis successfully distinguished both AD and MCI from CN and outperformed the voxel-based analysis using 3DT1-weighed images in separating MCI from CN. The first-order textures were more efficient in differentiating MCI from CN than did the second-order.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app