Add like
Add dislike
Add to saved papers

Screening for antioxidant and antibacterial activities of phenolics from Golden Delicious apple pomace.

BACKGROUND: Synthetic antioxidants and antimicrobials are losing ground to their natural counterparts and therefore, the food industry has motivated to seek other natural alternatives. Apple pomace, a by-product in the processing of apples, is rich in polyphenols, and plant polyphenols have been used as food additives owing to their strong antioxidant and antimicrobial properties. The goal of this study was to screen the individual polyphenols with antioxidant and antimicrobial activities from the extracts (methanol, ethanol, acetone, ethyl acetate, and chloroform) of Golden Delicious pomace.

RESULTS: First, the polyphenolic compounds (total phenol content, TPC; total flavonoids, TFD; total flavanols, TFL) and antioxidant activities (AAs) with four assays (ferric reducing antioxidant power, FRAP; 1,1-diphenyl-2-picryhydrazyl radical scavenging capacity assay, DRSC; hydroxyl radical averting capacity assay, HORAC; oxygen radical absorbance capacity assay, ORAC) were analyzed. The results showed a significant positive correlation (P < 0.05) between AAs and TFD. Ethyl acetate extract (EAE) exhibited the highest TFD with a concentration of 1.85 mg RE/g powder (expressed as rutin equivalents), and the highest AAs (expressed as butylated hydroxytoluene (BHT) equivalents) with 2.07 mg BHT/g powder for FRAP, 3.05 mg BHT/g powder for DRSC, 5.42 mg BHT/g powder for HORAC, and 8.89 mg BHT/g powder for ORAC. Composition and AA assays of individual polyphenols from the EAE were then performed. Phloridzin and phloretin accounted for 46.70 and 41.94 % of TFD, respectively. Phloretin displayed the highest AA, followed by phloridzin. Finally, the antimicrobial activities of the EAE, phloridzin, and phloretin were evaluated. EAE displayed good inhibitory activities against Staphylococcus aureus with a minimum inhibition concentration (MIC) of 1.25 mg/ml and against Escherichia coli with a MIC of 2.50 mg/ml. Phloridzin and phloretin showed better inhibitory activities than the EAE, which were MICs of 0.50 and 0.10 mg/ml, respectively, against S. aureus and MICs of 1.50 and 0.75 mg/ml, respectively, against E. coli.

CONCLUSIONS: Ethyl acetate was the best solvent of choice to extract natural products to obtain the maximum antioxidant and antibacterial benefits. Phloridzin and phloretin have the potential to be used as natural alternatives to synthetic antioxidants and antimicrobials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app