Journal Article
Review
Add like
Add dislike
Add to saved papers

Ventricular pacing - Electromechanical consequences and valvular function.

Although great strides have been made in the areas of ventricular pacing, it is still appreciated that dyssynchrony can be malignant, and that appropriately placed pacing leads may ameliorate mechanical dyssynchrony. However, the unknowns at present include: 1. The mechanisms by which ventricular pacing itself can induce dyssynchrony; 2. Whether or not various pacing locations can decrease the deleterious effects caused by ventricular pacing; 3. The impact of novel methods of pacing, such as atrioventricular septal, lead-less, and far-field surface stimulation; 4. The utility of ECG and echocardiography in predicting response to therapy and/or development of dyssynchrony in the setting of cardiac resynchronization therapy (CRT) lead placement; 5. The impact of ventricular pacing-induced dyssynchrony on valvular function, and how lead position correlates to potential improvement. This review examines the existing literature to put these issues into context, to provide a basis for understanding how electrical, mechanical, and functional aspects of the heart can be distorted with ventricular pacing. We highlight the central role of the mitral valve and its function as it relates to pacing strategies, especially in the setting of CRT. We also provide future directions for improved pacing modalities via alternative pacing sites and speculate over mechanisms on how lead position may affect the critical function of the mitral valve and thus overall efficacy of CRT.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app