Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The differential effects of alprazolam and oxazepam on methamphetamine self-administration in rats.

BACKGROUND: Methamphetamine is the second most commonly used illicit drug in the world, and despite recent attempts by the Drug Enforcement Administration to combat this epidemic, methamphetamine use is still on the rise. As methamphetamine use increases so does polydrug use, particularly that involving methamphetamine and benzodiazepines. The present study was designed to examine the effects of two benzodiazepines on methamphetamine self-administration.

METHODS: Five doses of methamphetamine (0.0075, 0.015, 0.03, 0.09, and 0.12mg/kg/infusion) were tested, producing an inverted U-shaped dose-response curve. Rats were then pretreated with oxazepam, alprazolam, or vehicle prior to methamphetamine self-administration. To determine if the effects of these drugs were due to the GABAA receptor and/or translocator protein (TSPO), we also pretreated rats with an antagonist for the benzodiazepine-binding site on the GABAA receptor (i.e., flumazenil) and a TSPO antagonist (i.e., PK11195) prior to alprazolam or oxazepam administration.

RESULTS: Oxazepam significantly reduced methamphetamine self-administration as demonstrated by a downward shift of the dose-response curve. In contrast, alprazolam significantly enhanced methamphetamine self-administration as evidenced by a leftward shift of the dose-response curve. Flumazenil completely blocked the effects of alprazolam on methamphetamine self-administration. When administered individually, both flumazenil and PK11195 partially reversed the effects of oxazepam on methamphetamine self-administration. However, when these two antagonists were combined, the effects of oxazepam were completely reversed.

CONCLUSIONS: The GABAA receptor is responsible for the alprazolam-induced enhancement of methamphetamine self-administration, while the activation of both the GABAA receptor and TSPO are responsible for the oxazepam-induced reduction of methamphetamine self-administration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app