Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Tin nanoparticles as an effective conductive additive in silicon anodes.

Scientific Reports 2016 August 4
We have found that the addition of tin nanoparticles to a silicon-based anode provides dramatic improvements in performance in terms of both charge capacity and cycling stability. Using a simple procedure and off-the-shelf additives and precursors, we developed a structure in which the tin nanoparticles are segregated at the interface between the silicon-containing active layer and the solid electrolyte interface. Even a minor addition of tin, as small as ∼2% by weight, results in a significant decrease in the anode resistance, as confirmed by electrochemical impedance spectroscopy. This leads to a decrease in charge transfer resistance, which prevents the formation of electrically inactive "dead spots" in the anode structure and enables the effective participation of silicon in the lithiation reaction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app