Add like
Add dislike
Add to saved papers

Butanol production in acetone-butanol-ethanol fermentation with in situ product recovery by adsorption.

Activated carbon Norit ROW 0.8, zeolite CBV901, and polymeric resins Dowex Optipore L-493 and SD-2 with high specific loadings and partition coefficients were studied for n-butanol adsorption. Adsorption isotherms were found to follow Langmuir model, which can be used to estimate the amount of butanol adsorbed in acetone-butanol-ethanol (ABE) fermentation. In serum-bottle fermentation with in situ adsorption, activated carbon showed the best performance with 21.9g/L of butanol production. When operated in a fermentor, free- and immobilized-cell fermentations with adsorption produced 31.6g/L and 54.6g/L butanol with productivities of 0.30g/L·h and 0.45g/L·h, respectively. Thermal desorption produced a condensate containing ∼167g/L butanol, which resulted in a highly concentrated butanol solution of ∼640g/L after spontaneous phase separation. This in situ product recovery process with activated carbon is energy efficient and can be easily integrated with ABE fermentation for n-butanol production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app